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The problem of the mean square stability of a linear system which is under the 
action of a Markov chain is reduced to the investigation of the stability of the 
system for the second moments from the solutions of the original system. The sys- 
tem for the second moments possesses the property that its solutions, correspon- 
ding in a specific sense to positive initial data, are positive. This property per- 
mits us to apply to the investigation of the stability problem the very well dev- 
eloped theory of positive operators in a linear space with a cone. 

1. Equation, for Becond momentr, We consider a system of n linear diff- 

erential equations dx/dt = A (u) x (1.1) 

which is under the action of a homogeneous Markov chain {u (t), 0 < t < Y j with a fin- 
ite number of states [l, 21. The behavior of the Markov chain is described by the tran- 

sition probabilities pii (t) = P (t, ui. (uj}); here the matrix P (t) = (pij (t)} satisfies 

the equality P (t) = cot, where Q is an infinitesimal matrix with elements 

/it t-‘pij (f), 

l- 
j+i 

qij = 
lim t-l (pii (t) - I), j y i 
I--O 

We introduce the numbers qi = -qii (i -: 1, . . . . 1Y) and the matrices 11,; = A (I~I;) (k=: 
1 , . . . . :V). The Markov process generated by system (1.1) is denoted, as in p], by(z (0, 
2~ (t), 0 ,.; t < 3 ). The solution of system (1.1) corresponding to the initial data 
z (0) = 20, 1~ (0) = Q, is written in the form 5 (t; .r , ub). By the norm of a vector z we 

mean its Euclidean norm Ij 5 // = 1 .r I2 + . . -1 .rl12 

De fi ni t io n (see Cl]). The trivial solution of system (1.1) is said to be asymptoti- 
cally mean square stable if for any number F > o we can find a number 6 > 0 such 
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that any solution of system (1.1) with initial conditions satisfying the inequality 11 x0 11 < 
6 satisfies the inequality 

11f (11 Z (t; x0, ak II’) < E 

for all t > 0 and all uh and, furthermore, the mean M ( 11 x (t; x0, uk) jl 2, tends to zero 
as Tim. 

In [3] it was shown that the investigation of the mean square stability of a system of 
stochastic differential equations can be reduced to an examination of the stability of a 

certain deterministic system of linear differential equations with constant coefficients. 
For a scalar Eq. (1.1) a system of linear differential equations with constant coefficients 
was described in [‘2]. which is satisfied by the second moments and the asymptotic stab- 

ility of whose trivial solution is equivalent to the mean square stability of the trivial 

solution of Eq. (1.1). A similar system can be obtained also in the n-dimensional 
case. Below we use the notation adopted in F-J. 

Let cp (H, (uj)) be the initial distribution of the Markov process{x (t), u ($1, 0 d t < x3. 

We introduce the functions 

lnijk Ct) = (lijk (x1 u8)1 uiT (By {u~l)) = (Ttfijk (5, us)* ‘p (H, {us})) 

(k=1,..., N; i=l,... n; i=f,..., n) (1.2) 

I XiXj9 S=T 

lij’ (x3 ui) = 
0, s#.r 

The functions mij” (t) are the means of the functions fij” at the instant t under the 

stated initial probability distribution of the Markov process. According to Theorem 4 of 

p] we have 
dn$ (t) rl 

dt 
= c $J.i, (UT) fjlr (5~ US) + 2 ajl (ur) lilr t5t u~) - 

’ I=1 1=1 

- 9Jijr (XI Us) + 2 9sp!ijr (x? up)Y ‘frP (H7 (“S))) (1.3) 
pfs 

Taking the relation 

2 ,,,,f.jr (5, up) = (9q’j’ s y k: r _ 2 clkrfiF (2, u,) 

P#S k#r 

into account, from (1.3) we obtain 

(1.4) 
I=1 I=1 Fi#T 

System (1.4) is a system of linear differential equations with constant coefficients, whose 
order is rlzn (n + 1 )N since mij’ = mji’ . Let us reduce the system obtained to a 
more convenient form. For this we first introduce the symmetric matrices II,. (t) -= 
(rnij’ (t)) (r = 1, s..) N). Then system (1.4) becomes 

(1.5) 

We introduce further the Liapunov operators C,. acting in the space M’ of symmetric 
n th-order matrices 



the vector M = (:M,, _. .) M,) whose compmnts are the symmetric matrices Ml, .-, 
H,, and *e operators 1, and Q which act fa the space I@’ of the vectors 1% and are giv- 
en b-f means of the Wth-order matrices 

where tXre rut$ (t) are the carresponding ccwdinates of the solution of system (13,4). sat- 

isfying the initial data 

‘?Qj’(0) 2zE 
I 

1: OxQ 
I 

r=li 

%o t rfk 
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tends to zero as t --, c4 for all i and r. In formula (2.3), X is the n-dimensional 

space of the variables zl. . . . . z,~, while P (t, Z, us, H, (uk)) is the Markov transition fun- 

ction of the process (5 (t), u (t), 0 < t < a) (see the notation in @, 41). It is not diffi - 
cult to obtain 

lim Ttfijr (5, us) = 0 (i = 1, . . ., n; j = 1, . . ., n; r = 1, . . ., N) (2.4) 
t-+m 

Let q (H, (~0) satisfy (2.2). The solution of system (1.5). M, (t) = {mijr (t)), satisfying 
the initial condition M, (0) = IV,., can be written as 

mijr(t) = (Tf!ijr f5? us)9 ‘P (H, {uS})) = 15 Tf.iijt(z, u& Cp CdsV {“*l) 
(2.5) 

x s=1 

By virtue of (2.4), rnijr (t) tends to zero as t - 00. Thus, any solution of system (1.5), 

corresponding to the initial condition M, (0) = M,, where M, (r = 1, . . . , N) is an arbi- 

trary positive-definite matrix, tends to zero as t - 00 .Since an arbitrary symmetric 
matrix can be represented as the difference between two positive-definite matrices, it 
follows that any solution of system (1.5) tends to zero as t ---) 00, i. e., the trivial solut- 
ion of this system is asymptotically stable. The theorem is proved. 

We note that for the sa.ke of brevity in what follows, together with the expressions : 
asymptotic mean square stability of the trivial solution of system (1.1) or the asymptotic 
stability of the trivial solution of system (1.5), we shall also use the expressions: stabil- 
ity of system (1.1). stability of system (1.5). stability of operator 21, etc. 

3. The po:itlveneBa of 8olution#, We consider a finite-dimensional normet 
spaced M’\‘of vectors M = (M,, . . . . MN), whose components are symmetric n x n matri- 

ces. In what follows, as a rule we do not use an actual form of the norm for the vector 
‘13 and, therefore, by the notation (1 ‘51 11 we mean some definite norm. We introduce 
the class Kl of nth - order nonnegative definite matrices. We shall write P, > RI if 

P,-RR,EK*,i.e., if P,- R, is a nonnegative-definite matrix, and P, > RI if P,- 

RI is a positive-definite matrix. We see that Kl is a cone in Ml [5]. that this cone 

is reproducing, i. e., any element .),I, E Ml is representable as the difference of two el- 

ements of ~1, and that the interior of this cone consists of positive-definite matrices. 
We consider a cone K” c M” consisting of vectors .\;I whose components are nonneg- 

ative-definite matrices. Let P E Ml', R E M’V, P = (PI, . . . . Plv), R = (R,, . . . . RN). 

We write P >, R if simultaneously p1 > RI, . . . . P, 2 R,v, and P > R if simultaneously 

PI> R,, . . . . P, > R,. The notation P > R is equivalent to the inclusion P - R E KLV. 

The cone KN is reproducing. A linear operator B on MN is called nonnegative if it maps 
the cone K!\‘into itself: BK” c KN, and B is called positive if BM > 0 is fulfilled for 

any M > 0 . Any nonnegative operator B possesses the property of monotonicity, i.e., 
BP > BR follows from P >R . Let us write the solution of system (1.7), satisfying 
the initial condition.11 (0) = .u’, in the form 

M = eAtMo, e.*t = I + At +. . . + ; .i’l P $ . , (3.1) 

where I is the identity operator in the space M”. 
Lemma 1. The operator eAt is nonnegative for any t > 0 . 
Proof. Let h1' = (hlL”, . . ., M,va) > 0, i.e., _lflo > 0, . . ., hlNc > 0 . We select the 

distribution CF (11, {fir)) such that nzi iT(O) = (I,;, 9 (II, {II,))) and M,’ = {/>Lij+ ((I)}. It 
was shown above that by some means we can select such a distribution in the case of the 
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positive-definite matrices M;, . . . . Mi. A similar distribution can be found also for non- 
negative-definite matrices. Furthermore, because the operator eAt is continuous and 
the vectors ,V > 0 comprise the interior of the cone KR‘, it is sufficient to prove the 
nonnegativeness of operator eA’ for the vectors M > 0. 

We consider the quadratic form 

(FPU, a)= 2 fijninj 

i,j=l 

where a = (al, . . . . a,) is a vector with real coordinates. The matrix of this quadratic 
form is (Xixj} for u = Us and equals zero for u # u p, therefore this form takes a nonneg- 
ative value (FPu, a) > 0 for any vectors x = (x,, . . . . z,), a = (al, ,.., a,) and any U, . 

Hence (Tt (FPa, a), (p) > 0 since (Tf (F’ a, a),,~+) is the mean of function (F”a, a) at 
the instant t under the initial distribution cp (H, (us)). Then 

1L 

G”t (F’n, a), (P) = T, mijr (t) UilZj > 0 

The latter inequality is valid for all a and, therefore, the quadratic form (_\I,. (1) a, a) 
is nonnegative definite, i.e., M, (t) > 0 and M (t) = eAt M“ > 0. The lemma is proved. 

We note that when Eq. (1.1) is scalar the operator A is a numerical matrix with non- 
negative off-diagonal elements. The nonnegativeness of the solutions for differential 
equations with such matrices is well known ([6], p. 207). 

Theorem 2. The operator A has a real eigenvalue which is not less than the real 
part of any of the remaining eigenvalues. At least one nonnegative-definite eigenvector 
corresponds to this eigenvalue. 

Proof. According to Lemma 1 and the Frobenius theorem [5] the operator e*b, 
where t,) > U is arbitrary, possesses a positive eigenvalue p0 such that all the remaining 
eigenvalues do not exceed PO in absolute value. The vector M” > 0 corresponds to this 
eigenvalue PO i.e., e% 151” = pollp (3.“) 

Suppose that all the eigenvalues of operator A are distinct. It is well known that if h 
is an eigenvalue of operator A, then eh o is an eigenvalue of operator eAtn. . We can 
choose t, such that all the eigenvalues of operator eAto also are distinct and that the 
realness of the eigenvalue h for operator A follows from the realness of the eigenvalue 
ehto for operator e*!u . We shall take it that the to in (3.2) has been chosen in just 
this way. Then h, = tiLlnpo is an eigenvalue of operator A, and the real parts of all the 
remaining eigenvalues do not exceed ?VI. Further, for such to all the eigenvectors of 
operators eAfo and A coincide.Therefore, t\,II” 2 h,ll’ and, consequently, we have 
proven the theorem for the case of distinct eigenvalues of operator A . The theorem’s 
proof in the general case is obtained from the preceding by calling on the.continuous 
properties of eigenvalues and eigenvectors. 

4. Necectory and sufficient atrbflity condition,. 1’. Theorem1 
reduces the problem of asymptotic mean square stability of the trivial solution of system 
(1.1) to the usual asymptotic stability of the trivial solution of system (1.7). System 
(1.7) is of order II2 II (n + 1) IV and we apply the usual methods for investigating it. In 

particular, if we apply the Liapunov function method, then for the stability investiga- 

tion we require quadratic forms of that same order, while to look for a quadratic form 
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we need, consequently, to find its parameters from a system of linear equations in num- 
ber l/z (‘ia a (a f 1) N -I- If riz n(n+ t) N. However, for system (X.7), because the op- 
erator 8’ is positive, the stability problem can be reduced to looking for only Vzn 
{n + 1) N parameters in all. 3ebw we derive the necessary and sufficient stability con- 

ditions, obtained previously by other means in [l], by making use of the idea of the 

positiveness of the solutions of Eqs. (1.7). We prove a lemma as a preliminary. 
Lemma 2, Let the operator B in the equation 

&I/& I= B&f (4.1) 

be such that the operator B -t pi is nonnegative for some p > 0. Then, far the stabiliity 
of operator B it is sufficient that the equation 

BM --- G (4.2) 

possesses a solution ,?I > 0 (M < 0) for some vecror C < 0 (C > 0) and it is necessary 

that Eq.(4,2) possesses a solution M > 0 (% < 0) for any e < 0 (C > 0). 
Proof. Sufficiency, Let equality (4.2) be fulfilled for some M > 0 and C < 0, 

Then when C < AM the inequalityBA&hiil holds for some h < 0 . Hence (B + pt) M < 

(h + p) 111” Since B -+- pl is a nonnegative operator, for any k 

(B i_ pl)“n/f \< fh -t P)‘J%~ 

Hence 

Let us now show that under the lemma’s hypotheses the operator eBt is nonnegative. 
tBic’)’ Indeed, if M &np. then fB ..b PI)“; JI > 0, whence e, . II 3, 0, which is equivalent to 

the inequality e AJ >, 0. Because X is positive definite, for any 5 >, 0 we can find a 

number Y > 0 such that Jq %$ vdl, therefore, 

0 -:< en’ TI -e<: ,@‘~II .< ve’.‘lll * . 

Consequently, for any % > 0 the solution e ” % of Eq, (4.1) tends to zero as t - cb 
(recall that h < 0). But from this it follows that eBi bI - 0 as t - ~0 for any fi1 E I\iJ, 
since the cone K ’ is reproducing. We have proven the sufficiency. 

Necessity, The trivial solution of Eq, (4.1) is asymptotically stable, therefore, 

all the sigenvalues of operator B lie in the left halfplane and operator B has an inverse 
B-l for which the formula LX 

B-lC = I._ 
$c ni Cd (4.3) 

0 

is vafid, It follows from formuia (4.3) that the operator - B-’ is positive,. This is so 
because the operator 8’ is nonnegative for all t >, 0 and because eBt C > 0 if C > 0 
for all sufficiently small i. Writing the solution of Eq, (4.2) in the form M = B-lC, 
we conclude the proof of the necessity and, along with this, of the lemma, 

T h core m 3 [l J. For the asymptotic stability of the trivial solution of Eq. (1.7)it 
is necessary that for any C < 0 (&’ > 0) the solution of the equation 

.\*I$ = f: t.&j 

exists and is positive definite AI > 0 (AI < 0) , and it is sufficient that for some C < 0 

(C > 0) the solution 111 of Eq”(4.4) satisfies the condition A1 > 0 (.\I < 0). 
Proof, N ecess it y is proved in the same way as the necessity in Lemma 2, 
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Indeed, according to Lemma 1 the operator e*’ is nonnegative, and, moreover, for 
small t , e*’ C < 0 follows from the condition C < 0 . Hence, the solution of Eq, (4.4) 
111 = A-iC > 0. 

Sufficiency. Suppose that z > 0 is a solution of Eq. (4.4) for some ? < 0 . Let 
us write Eq. (4.4) out in more detail 

For ,zI = Z = (‘VI, . . . . iv,) the Ic th equation of system (4.5) can be rewritten as 
- 

&‘lfk = CI, - q,,h!l- . . . - 'I&&_l- qh+Ik zik+l-...-'INkxfN (4.6 ) 

Since the right-hand side of this equality is a negative-definite matrix, while MJ~ > 0, 

we have that the operator Lk. is stable by a well known theorem of Liapunov. In other 
words, the eigenvalues of each matrix Ak - 1/2 qkE (k = 1, . . . . N) lie in the left half- 
plane, Hence it follows that operators LI, have inverses L,‘. We note in passing that 

the operators - L;’ are positive in the space &ii with cone Kl. Multiplying the kth 
equation of (4.5) on the left by the operator - L,;’ we obtain 

- Ml - q?J LI-‘;u,! - . - Q,~, L+MN = - LI-‘C!~ 

- qlL~-llvl- Iv,! - . - qh,o L?-lM,\, = - L1-lC2 1 
. . . . . . . . . . . . . . . . . . . . . . . . 

- qly L;Ml- qgv L$d?. - . - IIf, = - L$T, 

(4.7) 

We denote B = -L-i,4 = -I - L-IQ. We see that the operator B + I is nonnegative 

and the equality B% = -L-lc holds. Since - L-i?? < 0, by virtue of Lemma 2 we ob- 

tain that operator B is stable. Hence, once again from Lemma 2, we conclude that for 
any C < 0 the solution 111 of the equation 

BN z - L-l.\111 = - L-X 

is positive definite. A1 > 0. Therefore, for any C < 0 the solution N of the equation 
AAl = C is positive definite. Hence for any C. ,< U the solution hI of the equation AN-= 

C is nonnegative definite, .‘I/ 2 0. Therefore, from the equality AJl = ‘?J/ it foll- 
ows, when &f > 0 that li 6: 0. According to Theorem 2 the operator :1 has a real eigen- 
value h, to which corresponds the eigenvector 111 ’ ;d (J and, moreover, the real parts 

of all the remaining eigenvalues do not exceed ho . Consequently, to prove the stabi- 

lity of operator ;$ it is sufficient to prove that a0 < U. Since .\.U” = h,.ll”and X0 > 0, 
we have &, < 0. But ho # 0 because the operator A is invertible by virtue of the inver- 
tibility of operators B and I,. Thus, h0 < 0 and operator :\ is stable. The theorem is 

proved. 
Corollary 1. The stability of the matrices Ak --‘/zql; (k ==T 1, . .., A’) and the pos- 

itiveness of the operators - Lh_’ are the necessary conditions for the asymptotic mean 

square stability of the trivial solution of system (1.1). 
This assertion follows clearly from the sufficiency proof. A generalization of this 

corollary is given below. 
Corollary 2. We consider a subsystem of system (1.7), which is defined by the 

set of indices i, < i, < . . . <i;; (or, equivalently, by one of the principal minors of 
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matrix A) and has the form 
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dA = Li,Mi, + qiPi,Mil + 
dt 

. . . + QilCirMik (4.8) 

dMik 
- = qilikMi,$ qizikMi2+ . . + +i,W, dt 

If the trivial solution of system (1.7) is asymptotically stable, then the trivial solution 

of system (4.8) also is asymptotically stable. We omit the proof of this corollary. 

Corollary 3. For the stability of operator A it is necessary and sufficient that the 
operator - L-lA be stable. 

This follows from the sufficiency proof in Theorem 3. 

A note on linear Liapunov functions. We consider the case when Eq. 

(1.1) is scalar 
dxfdt = a (u) x 

The system of Eqs. (1.5) has the form 

5 = (2~r - q,) M, + 2 qi,Mi 
dt 

i#r 

(4.9) 

(4.10) 

where Mr (r = 1, . . . . N) are numbers, a, = a (z+). The matrix of system (4.10) is a num- 
erical matrix A. We can show that any matrix A with nonnegative off-diagonal eleme- 
nts can be related with an equation of form (4.9) as the matrix of the corresponding 
system for the moments. Therefore, by virtue of Theorem 3 the operator A* is stable if 

and only if the equation A*B = C, where C < 0 (i.e., all the numbers Cr, . . . . CNare 
negative), has a solution B > 0. For system (4.10) we consider the function 

N 

V (Ml, . . .p MN)=@, nil)= 2 BkMk 
k=l 

This function is positive in cone K N of vectors with nonnegative coordinates (if, it is 
clear, M # 0). The total derivative of this function relative to system (4.10) is 

= (B, AM) = (.\*B, M) = (c, M) (4.11) 

i. e., is negative in cone KN. Thus we get that for the asymptotic stability of the trivial 
solution of system (4.10) it is necessary and sufficient that there exist a linear function 
which is positive in K” and is such that its derivative relative to the system is a linear 
function negative in Ii”. It is natural to call such functions linear Liapunov functions. 
We confine ourselves to this note and do not consider here the general case from the 
viewpoint of linear Liapunov functions. 

2’. A simple stability criterion is known p, 81 for matrices with nonnegative off-dia- 

gonal elements. The application of this criterion to the matrix A of system (4.10) leads 
to the proposition: for the stability of matrix A it is necessary and sufficient to fulfill 
the N inequalities 

(2a1- QI cj_,l.. . ‘INL \ 

2n1 - q1< 0, I 2al- ql qa1 

Ql? 2ai - q2 I 
> 0, . -, (--I) 

N qu 2fl? - (12...qN~ 
>0 

cj, ,i c;~, . : ;ai.--+q, 

A generalization of this result to the case when the matrices ~1~. . . . . :I, commute is 
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given in Theorem 4. 
Lemma 3. Suppose that the matrices A,, . . . . AN commute. Then, all the operat- 

ors L I, . . . ,L,, all possible linear combinations of their products, and the inverses of 
these combinations (if these inverses exist) also commute. 

Proof. The commutability of the operators L,, . . . . L, is verified directly. The rest 
follows from the general results concerning linear operators in a finite-dimensional 
space. 

For the statement of the next theorem we introduce the operators 
I 21 921.. *‘.qNl 

A, = L1, A,= 
Ll 921 

I I Ql? L? 
, . ,, A, = ql:! L:! - * * ‘I,,‘2 

. . . . . . . 

q,N 9aN * . . L, 

where each operator Ah (k = 1, . . . . N) is obtained by a formal development of the de- 
terminant. 

Theorem 4. If the matrices A,, . . . . AN commute, then for the stability of opera- 

tor A it is necessary that the operators (-i)“&-’ be positive and it is sufficient that for 
any k the equation (-l)“A,M,=C, (4.12) 

have a positive-definite solution 1”11, > 0 for some Ck . 
Without carrying out a detailed proof of the theorem we note that it is based on the 

application of the Gaussian elimination method to system (4. 5). The operators encount- 
ered during the computations commute by virtue of Lemma 3, therefore, all the calcu- 

lations valid for the scalar case l7] carry over without any alterations. 
Note. Theorem 4 is valid for N = 2 in the general (and not only in the commuta- 

tive) case. 

We note also the necessary and sufficient conditions using the spectral properties of 

the operator - L-‘Q. In Corollary 3 to Theorem 3 we noted that the stability of operator 

A is equivalent to the stability of the operator -II,-18 = --_I - L-IQ. But the operator 
- L-IQ is nonnegative. Consequently, by the Frobenius theorem this operator has a non- 
negative eigenvalue PO such that all the remaining eigenvalues do not exceed PO in 

absolute value. We see that for the stability of operator -II,-l.4, and, consequently, also 
A, it is necessary and sufficient that PO < 1. 

Theorem 5. For the stability of operator A it is necessary that 

lim I/(- L-lQ)’ 11 = 0 (4.13) 
k-co 

and it is sufficient that for some .I! > 0 

lim (- L-lQ)k M = 0 
k-cm 

(4.14) 

Proof. Necessity. If A is stable, then p. < 1. But, by the Frobenius theorem, 
P (--~A-~Q) = po, where p (-L-‘Q) is the spectral radius of the operator -L-‘Q. We 
apply I. M. Gel’fand’s formula to compute the spectral radius 

lim IE/l] (- L-IQ)” II= p (- L-‘Q) (4.15) 
k-we 

Equation (4.13) follows from (4.15) because p (-L-‘Q) < 1 . 
Sufficiency. If .\I > 0, then for a sufficiently large k from (4.14) we have the 

inequality 
(- L-‘Q)h- 411 < rM (z< 1) (/t.lG) 
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The operator (-L-lQ)‘t is nonnegative, therefore, from (4.16) we obtain that its eigen- 
value largest in absolute value, which equals pot, is not greater than a. Therefore, 
u. < 1, and the theorem is proved. 

The noted spectral property of operator -L-‘Q and Theorem 5 permit us to make use 

of the highly developed theory of positive operators [5, 9, lQ] to establish the stability 
or instability of operator A. 
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